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The mean wall-normal gradients of the Reynolds shear stress and the turbulent kinetic
energy have direct connections to the transport mechanisms of turbulent-boundary-
layer flow. According to the Stokes–Helmholtz decomposition, these gradients can be
expressed in terms of velocity–vorticity products. Physical experiments were conducted
to explore the statistical properties of some of the relevant velocity–vorticity products.
The high-Reynolds-number data (Rθ � O(106), where θ is the momentum thickness)
were acquired in the near neutrally stable atmospheric-surface-layer flow over a
salt playa under both smooth- and rough-wall conditions. The low-Rθ data were
from a database acquired in a large-scale laboratory facility at 1000 < Rθ < 5000.
Corresponding to a companion study of the Reynolds stresses (Priyadarshana &
Klewicki, Phys. Fluids, vol. 16, 2004, p. 4586), comparisons of low- and high-Rθ as
well as smooth- and rough-wall boundary-layer results were made at the approximate
wall-normal locations yp/2 and 2yp , where yp is the wall-normal location of the peak
of the Reynolds shear stress, at each Reynolds number. In this paper, the properties
of the vωz, wωy and uωz products are analysed through their statistics and cospectra
over a three-decade variation in Reynolds number. Here u, v and w are the fluctuating
streamwise, wall-normal and spanwise velocity components and ωy and ωz are the
fluctuating wall-normal and spanwise vorticity components. It is observed that v–ωz

statistics and spectral behaviours exhibit considerable sensitivity to Reynolds number
as well as to wall roughness. More broadly, the correlations between the v and ω

fields are seen to arise from a ‘scale selection’ near the peak in the associated vorticity
spectra and, in some cases, near the peak in the associated velocity spectra as well.

1. Introduction
There are numerous important applications involving high-Rθ turbulent-boundary-

layer flows; see for example, Gad el Hak & Bandyopadyay (1994) and DeGraaff &
Eaton (2000). (Here, Rθ is the Reynolds number based on momentum thickness:
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Rθ = U∞θ/ν, where U∞ is the free-stream velocity, θ is the momentum-deficit thickness
and ν is the kinematic viscosity.) The Rθ values encountered in many such applications,
however, are often orders of magnitude higher than those capable of detailed study
by computation or by typical laboratory experimentation.

An important effect of increasing Reynolds number is that the outer length and
velocity scales (characterized by δ and U∞) become increasingly large relative to the
corresponding inner scales (characterized by the friction velocity Uτ ( =

√
τw/ρ) and

ν). Here, τw and ρ are the wall shear stress and mass density, respectively. Currently,
the effects of separation of scales on momentum transport are not well understood.
Among others, an important objective of this paper is to explore the effects of scale
separation on the mean dynamics. In addition, wall roughness can become significant
in high-Rθ turbulent boundary layers (e.g. DeGraaff & Eaton 2000; Priyadarshana &
Klewicki 2004b). The present study also provides information regarding the effects of
wall roughness (over a limited roughness range) on momentum transport at high-Rθ .

There is evidence that the predominant motions participating in turbulent-stress
production and transport have strong vortical signatures (Willmarth 1975; Robinson
1991; Smith et al. 1991; Falco 1991; Adrian, Meinhart & Tomkins 2000). Some of
the wall-layer features having connections to these vortical motions are low-speed
streaks, ejections, sweeps and internal shear layers. One can readily show that (a) the
gradient of the kinematic Reynolds shear stress, −uv, appears in the mean momentum
balance, shown below in (1.1) for a two-dimensional flat-plate turbulent boundary
layer in the (x, y)-plane, and that (b) this gradient may be expressed as a difference of
velocity–vorticity correlations, as shown in (1.4). The latter relationship is a reduction
of the tensor identity shown in (1.2) for a well-developed flow (e.g. Hinze 1975;
Klewicki 1989b) and is also a result of the Stokes–Helmholtz decomposition.

The mean momentum balance for a two-dimensional incompressible statistically
stationary flow over a flat plate is given by

U
∂U

∂x
+ V

∂U

∂y
=

∂

∂y

(
ν
∂U

∂y
− uv

)
. (1.1)

The tensor identity

∂ujui

∂xj

= −εijkujωk +
1

2

∂ujuj

∂xi

(1.2)

has relevance to the Reynolds stress-gradient term. That is, when i =1,

∂uv

∂y
= wωy − vωz +

1

2

∂(v2 + w2 − u2)

∂x
. (1.3)

Here x is in the flow direction and y is the wall-normal direction. As is customary,
the x and y mean-velocity components are written as U and V , time averaging is
denoted by an overbar or an uppercase letter, instantaneous quantities, denoted by a
tilde, are defined as the sum of a mean and fluctuation (e.g. ũ =U + u) and vorticity
components are identified by their subscript. Inner normalization is denoted by a
superscript plus sign. All r.m.s. measures of the fluctuations are represented by a
superscript prime.

As originally proposed by Hinze (1975), wωy −vωz may be thought of as the active
or rotational component of the motion, as proposed by Townsend (1961), and the
streamwise gradient (∂/∂x)(v2 + w2 − u2) as the inactive or irrotational component
of the motion. Klewicki (1989a, b) measured this streamwise gradient over the range
1000 � Rθ � 5000 and found that it was generally about three orders of magnitude
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smaller than wωy − vωz. Thus, for a well-developed turbulent boundary layer, the
wall-normal Reynolds stress gradient can be well approximated by

−∂ uv

∂y
∼= vωz − wωy. (1.4)

With (1.3), (1.1) becomes

U
∂U

∂x
+ V

∂U

∂y
= −1

2

∂v2

∂x
− 1

2

∂w2

∂x
+

1

2

∂u2

∂x
+

∂

∂y

(
ν
∂U

∂y

)
+ vωz − wωy. (1.5)

In this expression, the difference in the velocity–vorticity correlations constitutes
the axial component of the Lamb vector (Lele 1992; Wu, Zhou & Wu 1996).

As shown by various authors (Sreenivasan 1989; Wei et al. 2005), the wall-normal
position of the peak Reynolds stress occurs at y+

p � 2(δ+)1/2 for smooth-wall turbulent
boundary layers. Here δ+ is the Karman number or the inner-normalized boundary-
layer thickness. By definition, the wall-normal gradient of the Reynolds shear stress
is zero at yp . Therefore, with regard to affecting a time rate of change of mean
momentum, the −∂uv/∂y term in (1.1) acts as a source for y <yp and a sink for
y >yp . Further insight into this momentum source/sink character is provided by
(1.4), showing that −∂uv/∂y comes about directly through interactions between the
velocity and vorticity fields.

For i = 2, the identity (1.2) yields

∂q

∂y
= 2v

∂v

∂y
− uωz + wωx. (1.6)

Equation (1.6) provides a description of the flow-field interactions that establish the
wall-normal gradient of the turbulent kinetic energy, q = 1

2
(u2 + v2 + w2). As shown,

these are related to the difference in the velocity–vorticity correlations as well.
Independently of the physics embodied in (1.2), it has long been established that

a fluctuating vorticity field is one of the important characteristics of turbulent flows.
More specifically, vortex stretching has been postulated as the mechanism by which
larger eddies transfer angular momentum to smaller eddies and in doing so it also
sustains the classically postulated energy cascade. This mechanism is likely to be the
underlying reason why most turbulent flows are characterized by high levels of high-
frequency vorticity fluctuations (Tennekes & Lumley 1994; Balint, Vukoslavcevic &
Wallace 1987). For turbulent wall flows, free-stream kinetic energy is converted to
turbulent kinetic energy and dissipated to internal energy. Associated with this (1.4)
and (1.6) explicitly indicate that vortical motions, via their interaction with the velocity
field, participate in generating turbulent stress gradients. It is also well established that
vorticity-field information is highly useful in understanding the organized motions in
time-dependent viscous flows (Balint et al. 1987, 1991; Wallace & Foss 1995; Honkan
& Andreopoulos 1997). Time-resolved measurements of vorticity, however, require a
probe with very good spatial and temporal resolution (Wyngaard 1969; Klewicki &
Falco 1990; Balint et al. 1991; Rajagopalan & Antonia 1993; Wallace & Foss 1995;
Folz 1997; Honkan & Andreopoulos 1997). Maintaining good spatial resolution at
high-Rθ is an especially acute challenge.

As revealed in (1.4) and (1.6), velocity–vorticity correlations are important
in describing wall-normal stress gradients. Relatively few studies, however, have
measured or computed data relative to (1.4) and (1.6). Klewicki (1989b) provided
a significant documentation of velocity–vorticity correlations in turbulent boundary
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layers. His results indicate considerable Rθ variations in the vωz
+ profile but a

much smaller relative variation in the uωz
+ profile over the range 1000 � Rθ � 5000.

Subsequent studies by Ong (1992) and Rovelstad (1991) also present velocity–vorticity
correlations. Generally, these are in good agreement with the results of Klewicki
(1989b) as well as those of Rajagopalan & Antonia (1993). The latter authors studied
the structure of the velocity field associated with the spanwise vorticity field in a
turbulent boundary layer at Rθ = 1450. They presented correlation coefficients and
cross-correlation functions associated with the vωz and uωz products. Crawford &
Karniadakis (1997) studied the characteristics of the components of the Lamb vector
in channel flows with direct numerical simulation (DNS). The Reynolds number
based on channel height in this study was 5000.

Regarding scale-separation effects, the generally accepted properties of the velocity
and vorticity fields in turbulent flows indicate that with increasing Reynolds
number the spectral peaks in the fluctuating v and ω fields move to increasingly
disparate wavenumbers (e.g. Balint et al. 1991). Thus, one possibility is that these
interactions occur within a decreasingly narrow, intermediate, wavenumber band
(relative to the total span of possible wavenumbers) over which the relevant v and
ω spectral components overlap. Velocity–vorticity cospectra provide some evidence
that intermediate scales are important (Priyadarshana & Klewicki 2004a). A central
objective of the present effort is to explore the interactions leading to −∂uv/∂y as δ+

becomes large.

2. Experimental setup and methodology
2.1. Experimental facility

The high-Rθ experimental data used in this study were obtained at the Surface
Layer Turbulence and Environmental Science Test (SLTEST) facility, as described in
Metzger & Klewicki (2001) and Klewicki & Metzger (2004). In particular, a significant
number of the velocity–vorticity time series analysed herein were derived from the
experiments described by Priyadarshana & Klewicki (2004b).

All the measurements at the SLTEST facility were made around sunset, under near
neutrally stable atmospheric conditions. The thermal stability of the atmospheric
surface layer was assessed using the Monin–Obukov stability parameter ζ (ζ = y/l),
where y is the wall-normal coordinate. The Monin–Obukov length l is defined as

l = −Θ0U
3
τ

κgθv
, (2.1)

where, Θ0 is the mean temperature of an adiabatic atmosphere, θ is the fluctuating
component of the difference between the actual temperature and Θ0 and κ(= 0.41)
is the von Karman constant. Detailed information on stability criteria is given in
Priyadarshana & Klewicki (2004b). Experimentally estimated integral parameters
utilizing miniSODAR (Metzger, Klewicki, Bradshaw & Sadr 2001; Priyadarshana
2004) velocity profiles for smooth and rough surface flows are summarized in table 1.
For more information on wall roughness, refer to Metzger (2002), Klewicki & Metzger
(2004) and Metzger & Klewicki (2001). In this table it is interesting to note that the
present high-Rθ shape factors agree well with the recent H (Rθ ) prediction of Nagib,
Chauhan & Monkewitz (2005). Similarly, the shape factors for the data of Klewicki
(1989a) at 1010 < Rθ < 4850 agree well with their results. The wall-friction velocity
Uτ was measured using a 2.4m diameter drag balance (Sadr & Klewicki 2000). The
inner-normalized boundary-layer parameters, the wall-roughness values k+

s and the
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Rθ U∞ (m s−1) θ (m) δ∗ (m) δ (m) H

� 2 × 106 6.31 5.39 6.47 84 1.19
� 4 × 106 17.2 4.43 5.27 69 1.24
� 2 × 106 7.35 4.57 5.58 67 1.22

1010 0.607 0.0248 0.0360 0.206 1.45
2870 1.752 0.0245 0.0343 0.205 1.40
4850 2.981 0.0243 0.0335 0.199 1.38

Table 1. Estimated integral parameters for the high- and low-Rθ boundary layers. Note that
the values cited for the high-Rθ experiments are typical, but varied within the ensemble of
acquisition runs collected. Here δ∗ is the displacement thickness, δ is the boundary-layer
thickness and H is the shape factor. All the other symbols are as explained in the main text.

Rθ Uτ (m s−1) ν (m2 s−1) k+
s δ+ yp (m) y+

p

� 2 × 106 0.1962 1.85 × 10−5 25 ∼ 50 8.9 × 105 0.1783 1892
� 4 × 106 0.5366 1.85 × 10−5 ≈ 300 2.0 × 106 0.0976 2825
� 2 × 106 0.2803 1.87 × 10−5 ≈ 500 1.01 × 106 0.1335 2010

1010 0.0282 1.5 × 10−5 smooth 388 2.58 × 10−2 39.4
2870 0.0707 1.5 × 10−5 smooth 966 1.63 × 10−2 62.2
4850 0.1125 1.5 × 10−5 smooth 1493 1.27 × 10−2 77.3

Table 2. Inner-normalized wall-roughness values k+
s , inner parameters and estimated peak

locations yp of −uv + for high- and low-Rθ smooth- and rough-wall turbulent boundary
layers. y+

p is the inner normalized peak position of the Reynolds stress.

estimated inner-normalized peak-Reynolds-stress locations at each Rθ are shown in
table 2.

To assess the Rθ effects, the highest-Rθ data were compared with well-resolved ve-
locity and vorticity measurements of Klewicki (1989a), Klewicki & Falco (1990, 1996)
and Klewicki, Murray & Falco (1994). Some previously unreported results from the
data sets of Klewicki (1989a) relating to the statistics and spectra are also presented
herein.

2.2. Instrumentation and data acquisition

Three types of custom-made hot-wire probes were used to acquire the streamwise,
wall-normal and spanwise velocity components. The first probe used by the
University of Utah group was the six-element x-array probe (6X probe) described
in Priyadarshana & Klewicki (2004b). This probe, composed of three x-arrays, was
used to acquire instantaneous streamwise and wall-normal velocity components at
three closely spaced wall-normal positions. The second probe used by the University
of Utah group was a custom-made six-element v-array sensor (6V probe). In this
probe, the six wires were arranged in a four v-array configuration facilitating the
measurement of instantaneous streamwise and spanwise velocity components at two
different wall-normal locations and two different spanwise locations. The vorticity
probes, utilized in the present study by the Michigan State University group, were
formed from arrays of four hot-wires. In this configuration, two hot-wires are parallel
to one another and perpendicular to the probe body while the other two wires cross to
form an X as viewed from a vantage point along the axis of one of the parallel wires
(Wallace & Foss 1995). This array of sensors provides a microcirculation domain of
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Figure 1. (a) Six-element x-array sensor wire separation �y and (b) six-element v-array
sensor wire separation �z normalized by the Kolmogorov length η, as a function of y+. �,
Rθ = 2 × 106, k+

s ≈ 25 ∼ 50; �, Rθ = 4 × 106, k+
s ≈ 300, rough-wall; �, Rθ = 2 × 106, k+

s ≈ 500,
rough-wall; − − −, �y/η =2π or �z/η = 2π, the optimal probe resolution suggested by Folz
(1997).

order 1 mm2. Previous measurements using this probe are described in Foss (1994)
and Morris & Foss (2004).

The Wheatstone-bridge circuits for both six-element hot-wire probes were provided
by A.A. Lab-Systems AN-1003 constant-temperature hot-wire anemometers. The six-
wire signals were digitized at a sampling frequency of 5 kHz using 16-bit simultaneous
sample- and -hold analog-to-digital converters. Details relating to the calibration and
operating procedures of the six-wire probes are given in Priyadarshana & Klewicki
(2004b). The four-sensor vorticity probes were driven by a 16-channel pulse-width-
modulated constant-temperature anemometer (PWM-CTA). The operating principle
for this anemometer is described in detail in Foss, Bohl & Hicks (1996). The data
samples for these probes were collected at a rate of 50 kHz. The reasons for this
very high sampling rate pertain to the microcirculation-based vorticity-estimation
methodology described in § 2.4.2 below. The calibration and operating procedures for
these sensors are given in Treat (2006).

All the hot-wire sensors employed 5 µm diameter tungsten wires. These wires had
a sensor length of 1 mm, which is 10–15 wall units at Rθ � 2 × 106. This is also the
nominal �y+ spacing in the four-wire probes, which was between 1.3η and 3.0η. Here
η is the Kolmogorov length scale; η = (ν3/ε)1/4 where ε is the dissipation and ν is the
kinematic viscosity. (The dissipation in the log-law region was estimated by employing
the assumption that the turbulent kinetic energy production equals the dissipation
for the Utah group measurements and by using η =15νu2/λ2

u, where λu is the Taylor
microscale based on u for the Michigan State University group measurements). The
inner-normalized wall-normal spacing �y+ between adjacent x-arrays in the six-
element x-array probe, however, was generally around 30 wall units. As shown in
figure 1(a), the �y range for this probe was between 4η and 15η in the log-law region.
Similarly, the inner-normalized spanwise spacing �z+ between two v-arrays in the
six-element v-array probe was around 30 wall units. This was between 2η and 13η, as
shown in figure 1(b). According to Folz (1997), for atmospheric measurements a �y

value of about 2πη yields minimal attenuation of the important scales contributing to
vorticity. He also showed that at this �y value, the effect of the instrument noise in
the AN1003 system (1∼ 2 mV) is greatly attenuated. This optimal probe resolution is
depicted by the horizontal dashed line in figure 1. As indicated, some high-Rθ six-wire
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probe data fall above this line. Thus, some attenuation of the high-Rθ ωz signals is
expected. The present four-wire probe data show minimal attenuation.

2.3. Data-analysis techniques

2.3.1. Techniques used in computing turbulent statistics

A primary quality measure of the instantaneous signals of six-wire probes selected
for the analysis was that during acquisition the wind did not exhibit transient (ramp
up, ramp down) behaviour. Thus, only the time series of velocity and vorticity
that, when plotted, exhibited a well-defined horizontal mean line were selected for
subsequent analysis (Priyadarshana & Klewicki 2004b). All the turbulence quantities
for six-wire probes were obtained by subtracting the overall mean of each individual
signal. In this methodology, changes in the local mean velocity within different runs
were not considered as a part of the low-frequency turbulence but as a change in
the mean velocity. In interpreting results derived in this way, particular attention
was paid to spectra and cospectra for the possible influences of low-wave-number
truncation. The present four-wire data, from two days, indicated gradually decreasing
mean velocities during the acquisition period. A linear relationship such that the most
accurate streamwise velocity fluctuations could be defined was used to express these
gradual decreases. In the present study, 30–40 minute observation times (and often
more) at each point were used to compute the flow statistics.

2.4. Extraction of vorticity time series

2.4.1. Extraction of vorticity time series from the six-wire probes

For the six-wire probes, the wall-normal velocity gradient ∂u/∂y (one contribution
to ωz = ∂v/∂x − ∂u/∂y) was obtained directly by differencing the u-components
from the top and the middle x-arrays of the six-element x-array probe. Similarly,
the spanwise velocity gradient ∂u/∂z (a contribution to ωy = ∂u/∂z − ∂w/∂x) was
obtained directly by differencing the u-components from the left and the right v-
arrays of the six-element v-array probe. The streamwise gradients ∂v/∂x and ∂w/∂x

were computed using Taylor’s hypothesis. A local mean streamwise velocity computed
over 6000 viscous time units was used as the convection velocity in Taylor’s hypothesis
for all the six-wire-probe data.

2.4.2. Extraction of vorticity time series from the four-wire probes

The computational strategy of extracting the transverse vorticity from the four-
sensor probe is given in Wallace & Foss (1995). Briefly stated, a microcirculation
domain (of area δs × δn) is created where the domain is oriented in the locally
defined streamwise (s) direction with a height δn equal to the separation between
the two straight wires δy. The centre point of the domain is established at time, tk .
Convected steps

±δskrtk = ±
(

V1 + V2

2

)
k±δk

cos(γk+tδk − 〈γ 〉) (2.2)

‘build’ the microdomain by adding segments to δs until δs � δn. 〈γ 〉 is the cumulative
orientation angle of the domain centreline and V1,V2 are the velocity magnitudes
from the straight wires.

The circulation Γ around this domain is formally equal to the spatially averaged
transverse (⊥) vorticity within the domain as

ω⊥ =
1

δsδn

∫
V · dl (2.3)



314 P. J. A. Priyadarshana, J. C. Klewicki, S. Treat and J. F. Foss

The velocity–length segments are obtained for each time step. This underlies the
requirement for a very high sampling rate at the given flow speeds. In the overall
computation, the velocity magnitudes V1,2 cos(γkγ δk−〈γ 〉) contribute to the s-segments,
and the V sin(γ −〈γ ′〉) values at the ‘ends’ of the microdomain also contribute to the
microcirculation.

2.4.3. Techniques used in computing event durations

Event-duration analyses were performed to obtain the vorticity time scales. These
analyses were similar to those performed by Klewicki, Falco & Foss (1992) and
Klewicki & Falco (1996). The magnitudes of the fluctuating vorticity signals were
tracked from the beginning to the end of the signal. When these magnitudes exceeded
a specified threshold level (positive or negative), counting of an event duration was
initiated. The event continued until its magnitude dropped below the threshold.
Furthermore, to account for small-amplitude deviations that might prematurely end
events, and to maintain consistency with the event-duration analyses of Klewicki
et al. (1992) and Klewicki & Falco (1996), the present method required the signal to
drop 20% below the threshold before an event was terminated. The threshold for the
present analyses was selected as 1.0 r.m.s. (e.g. 1.0ω′

z).

2.4.4. Spectral analysis

The process used to compute the cospectra and power spectra was the same as that
described by Priyadarshana & Klewicki (2004b). Briefly, the signal was divided into
windows of 4096 data points each before computation of the fast Fourier transform
(FFT). The power spectral density and the cross spectral density were computed
using Welch’s averaged modified-periodogram method. A Hanning window of the
same size as the signal-window size was used to minimize the spectral leakage and
the signal was overlapped by 50% to improve averaging. Similarly to the method
used by Saddoughi & Veeravalli (1994), the low-frequency portion of the spectrum
was obtained by down-sampling the signals using an anti-aliasing (low-pass) finite-
duration impulse-response (FIR) filter. The cospectra of velocity and vorticity were
obtained using the real part of the cross spectral density (Bendat & Piersol 1986;
Shiavi 1999).

3. Results
Detailed results are presented and explained in this section. It is relevant to

examine the statistical properties of the individual velocity and vorticity signals
prior to an analysis of the velocity–vorticity products. Section 3.1 describes the
statistics for the velocity components and § 3.2 describes spanwise vorticity component
statistics. Section 3.3 describes vorticity time scales. Analyses of the velocity–vorticity
correlations vωz, wωy and uωz are then presented in §§ 3.4, 3.5 and 3.6, respectively.
These include statistics and spectral analysis.

3.1. Velocity component statistics

3.1.1. Mean streamwise velocity profiles

The mean streamwise velocities acquired during near neutral conditions are shown
in figure 2. The abscissa is the logarithm of the inner-normalized wall-normal distance,
y+(= yUτ/ν), and the ordinate is the inner-normalized mean velocity, U+(= U/Uτ ).
The data close to the wall, shown in dark symbols, were acquired using the six-
wire probes. The data between 60 m and 100 m (y+ � 2 × 105 to y+ � 1 × 106) were
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Figure 2. Inner-normalized mean-velocity profiles U+ vs. y+ at various k+
s values, for the

atmospheric surface layer during near neutral stability: − · − · −, U+ = (1/0.39) ln y+ − 3.79;
· · ·, U+ = (1/0.46) ln y+ − 3.29; ——, U+ = (1/0.41) ln y+ + 5.1. The other symbols are defined
in table 3. The representative low-Rθ smooth-wall profile is from Klewicki & Falco (1990).

acquired using the miniSODAR. The three-dimensional sonic anemometers were
used to acquire velocities at intermediate heights from 1 m to 5 m (y+ � 2 × 104 to
y+ � 2 × 105). Each hot-wire data point shown in figure 2 represents a 30–40 minute
time average. The sonic anemometer data and the miniSODAR data, simultaneously
acquired at much greater elevations above the ground, show striking agreement with
the logarithmic trend of the near-wall hot-wire data. Furthermore, the logarithmic
curve-fits between the hot-wire, the miniSODAR and sonic-anemometer data show
that the mean-velocity gradient is in good agreement with a von Karman constant κ

of about 0.4. This indicates a strong mechanical coupling of the atmospheric surface
layer (ASL) to the surface condition up to y+ values near 106, and thus provides
evidence that, for this statistic, the near neutrally stable ASL behaves quite similarly
to a canonical zero-pressure-gradient turbulent boundary layer.

The wall roughness was estimated in terms of the equivalent sand roughness ks ,
using the correlation with the downward shift in the mean-velocity profile of Krogstad,
Antonia & Browne (1992):

�U
+

=
1

κ
ln k+

s − 3.2. (3.1)

The data in figure 2 shown by squares (�) were taken during summer 1999 and
summer 2004 when the salt playa was relatively smooth. For these data, the downward
shift is minimal and the inner-normalized wall roughness k+

s for the first five data
points is around 25 and the same quantity for the next five data points is between
50 and 100. The next set of data, shown by forward triangles (�), was taken during
summer 2000 when the salt playa was relatively rough as a result of drier weather. The
downward shift for these data is significantly greater, yielding a k+

s estimate of about
300. The data shown by backward triangles (�) were taken during summer 2001. In
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Figure 3. The present high-Rθ inner-normalized streamwise velocity-intensity profiles with,
for comparison, selected well-resolved low-Rθ data. The symbols are defined in table 3.

this case, the salt playa was rougher than in the year 2000: k+
s � 500. The data shown

by the plus symbols were acquired in summer 2003 using the four-wire probes; then
k+

s � 100. For comparison, the Rθ =2870 mean-velocity profile from Klewicki (1989a)
is also presented.

3.1.2. Streamwise velocity intensities

Figure 3 shows the intensities of the inner-normalized streamwise velocity
fluctuations for the present high-Rθ relatively-smooth-wall (k+

s ≈ 25 ∼ 50) and rough-
wall (100 � k+

s � 500) turbulent boundary layers. The abscissa is the inner-normalized
wall-normal distance y+ and the ordinate is the inner-normalized streamwise intensity,
u′+(≡ u′/Uτ ). A key to the symbols is given in table 3 along with estimates of Rθ

and k+
s . For comparison, smooth-wall turbulent-boundary-layer streamwise intensities

from Klewicki (1989a), DeGraaff & Eaton (2000) and Metzger & Klewicki (2001)
are shown as well. For the high-Rθ flow, note that the boundary-layer thickness is
approximately 1 × 106 wall units. Thus, all the present high-Rθ data fall well within
the logarithmic layer. As can be seen in figure 3, there is a significant dependence of
u′+ on Rθ . At greater y+, this expected behaviour can clearly be seen in the larger
u′+ values of the present high-Rθ data. There is also good agreement between the
data from the six-element and four-element hot-wire probes. The present high-Rθ

u′+ results for k+
s � 300 may also indicate a slight surface roughness effect, as u′+

appears to increase slightly with increasing wall roughness. This is observed well
above the roughness sublayer (3 ∼ 5 roughness heights). This result, however, requires
further investigation. Regarding this issue, Krogstad et al. (1992) and Flack, Schultz
& Shapiro (2005) observed no significant change in the streamwise intensity in rough-
wall turbulent boundary layers outside the roughness sublayer. In any case, it is
apparent that the effects of surface roughness on the streamwise intensity are small
compared with the effects of the Reynolds number.
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Symbol Source Data type Probe Rθ k+
s l+ �y+

� present (hot-wire) ASL 6X and 6V ∼ 2 × 106 25∼50 10 31

� present (hot-wire) ASL 6X and 6V ∼ 4 × 106 300 25 66

�© present (sonic) ASL sonic ∼ 4 × 106 300 — —

� present (hot-wire) ASL 6X and 6V ∼ 2 × 106 500 16 48

�© present (miniSODAR) ASL SODAR ∼ 2 × 106 500 — —

+ present (hot-wire) ASL four-wire ∼ 4 × 106 100 11.0 11.0

� Klewicki (1989a) WTBL (x-wire 1010 smooth 2.0 2.0

	 Klewicki (1989a) WTBL and 2870 smooth 4.8 4.8


 Klewicki (1989a) WTBL parallel) 4850 smooth 7.8 7.8

© DeGraaff & Eaton (2000) WTBL LDV 1430 smooth 0.6 —

� DeGraaff & Eaton (2000) WTBL LDV 13000 smooth 4.4 —

� DeGraaff & Eaton (2000) WTBL LDV 31000 smooth 9.9 —

 Metzger & Klewicki (2001) ASL u-rake ∼ 5 × 106 smooth 9.0 2∼9

� Metzger (2002) ASL dual x ∼ 5 × 106 smooth 20 50

� Balint et al. (1991) WTBL nine-wire 2685 smooth 10.9 10.9

� Honkan & Andreopoulos (1997) WTBL 12-wire 2790 smooth 6 10

� Rajagopalan & Antonia (1993) WTBL four-wire 1450 smooth 13 17

⊕ Spalart (1988) WTBL DNS 670 smooth — —

⊗ Spalart (1988) WTBL DNS 1410 smooth — —

∗ Warnack (in Fernholz & Finley 1996) WTBL x-array 864 smooth 12 —

× Warnack (in Fernholz & Finley 1996) WTBL x-array 2552 smooth 15 —

� Warnack (in Fernholz & Finley 1996) WTBL x-array 4736 smooth 14 —

� Folz (1997) ASL u-rake ∼ 1 × 106 smooth‡ 6,14 4∼13

Crawford & Karniadakis (1997) CF DNS 5000‖ smooth — —

� Ong (1992) WTBL nine-wire 1070 smooth 11.0 ≈ 7

‡ transitionally smooth ‖ Reynolds number based on channel height

Table 3. Detailed description of flow parameters for the data presented in figures 3–28. ASL:
atmospheric surface layer/SLTEST. WTBL: wind tunnel boundary layer. CF: channel flow.

3.1.3. Wall-normal velocity intensities

The intensities of the inner-normalized wall-normal velocity fluctuations v′+ for
the present high-Rθ turbulent-boundary-layer flows are shown in figure 4. As noted
by DeGraaff & Eaton (2000), v′+ measurements in turbulent boundary layers are
relatively scarce in comparison with u′+ measurements. DeGraaff & Eaton (2000)
presented well-resolved (less than 10 viscous units) laser-Doppler velocimetry (LDV)
measurements of the wall-normal stress v2

+
for Rθ values ranging from 1430 to 31 000.

Fernholz & Finley (1996) compiled the available x-array hot-wire measurements of
v′+. The spatial resolution of these data, however, varies between about 7 and 70
viscous units. The profiles of v′+ from Klewicki (1989a) and DeGraaff & Eaton (2000)
are presented for comparison in figure 4. The Rθ = 2870 and 4850 data of Klewicki
(1989a) in figure 4 exhibit a small but discernible Rθ -dependence, specifically relating
to the position of the peak value attained. The value of this plateau, according to
DeGraaff & Eaton (2000), is around 1.16. The data at Rθ =1010, however, show
a significant Rθ -dependence. This could be a very-low-Rθ effect, as described by
DeGraaff & Eaton (2000). Above Rθ values greater than about 1500, the peak
value of v′+ exhibits very little increase with increasing Rθ . As shown, the low-Rθ

(2000 � Rθ � 31 000) v′+ data have peaks between 1.1∼1.2. Interestingly, the present
relatively smooth Rθ � 2 × 106 data also yield peak values around 1.1∼1.2, the profile
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Figure 4. The present high-Rθ inner-normalized wall-normal velocity-intensity profiles with,
for comparison, selected well-resolved low-Rθ data. The symbols are defined in table 3. The
horizontal line corresponds to v′+ =1.16.

remaining essentially constant with increasing y+. Therefore, there appears to be very
little Rθ -dependence in v′+ for Rθ values above the low-Rθ regime.

The present high-Rθ rough-wall v′+ data, however, exhibit noticeably larger
magnitudes than the smooth-wall data. The average peak magnitude of these data
is about 1.4 for the k+

s ≈ 500 case and about 1.3 for the k+
s ≈ 300 case. One of

the present four-wire data points at k+
s ≈ 100 shows v′+ ≈ 1.2. These measurements

were observed well above 3∼5 roughness heights and thus are in agreement with
Krogstad et al. (1992), who observed effects of surface roughness in v′+ well above
the roughness sublayer. They are not, however, in agreement with the conclusion
of Flack et al. (2005), who found little roughness effect in v′+ above the roughness
sublayer. Overall, the present results indicate that v′+ does not depend significantly
on Rθ (for Rθ � 2000) but does exhibit a discernible dependence on surface roughness
for the k+

s and y+ values explored.

3.1.4. Spanwise velocity intensities

Inner-normalized spanwise velocity intensities w′+ are shown in figure 5. Similarly
to the existing low-Rθ results, all the present high-Rθ w′+ values are greater than the
v′+ values at the same y+, but less than the corresponding u′+ values (Honkan &
Andreopoulos 1997). The present relatively-smooth-wall data, in relation to the low-
Rθ data, show a detectable increase in w′+ (despite scatter) in the region 40<y+ < 110,
exhibiting an average value of approximately 2.06. The average value of w′+ in the
region 700 <y+ < 10 000 is 2.25. The present Rθ � 4 × 106 four-wire data with k+

s ≈ 100
at y+ ≈ 2000 agree well with these data. The four-wire data point at y+ ≈ 973, however,
shows a significantly lower intensity level. The DNS w′+ results of Spalart (1988) at
Rθ = 670 and 1410 and the hot-wire data of Warnack (reported by Fernholz & Finley
1996) are shown for comparison. The data of Warnack at Rθ = 4736 are lower than
those of Spalart (1988) at Rθ = 1410; this could be a spatial-resolution effect. The data
of Balint et al. (1991) at Rθ = 2685 show good agreement with the data of Warnack at
Rθ = 2552. In contrast, the data of Honkan & Andreopoulos (1997) show significantly
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Figure 5. The present high-Rθ inner-normalized spanwise-velocity intensity profiles with, for
comparison, selected well-resolved low-Rθ data. The symbols are defined in table 3.
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Figure 6. Variation of w′+
max vs. Rθ : w′ = 0.256 log Rθ + 0.742 describes the curve-fit. The

error bar indicates the total data scatter.

higher values at Rθ = 2790. There is a mild Rθ effect in the data of Warnack, which
increases with increasing Rθ for the range 864 < Rθ < 4736. In this regard, it is relevant
to note that the relative effects of attenuation due to spatial resolution in the data
of Warnack are likely to be nearly constant since for these data the wire length only
varied between 12 and 15 viscous units. Similarly, the DNS data of Spalart (1988)
for 300 <Rθ < 1410 show a mild Rθ -dependence. Over the full Rθ range depicted in
figure 5, the peak w′+ data show a significant variation in magnitude.

The peak values of w′+ from the above data were compiled and plotted as a function
of Rθ and are shown in figure 6. The peak w′+ value exhibits an approximately
logarithmic increase with increasing Rθ . The curve-fit shown utilized the entire range
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Figure 7. The present high-Rθ inner-normalized wall-normal-vorticity intensity profiles with,
for comparison, selected well-resolved low-Rθ data: �, (∂u/∂z)′+ at Rθ = 1010; 	, (∂u/∂z)′+ at
Rθ = 2870. The other symbols represent ω′+

y as defined in table 3.

of Rθ . As is evident, there is scatter in the low-Rθ data, although the increasing
trend is apparent. The approximately logarithmic increase in w′+ and u′+ (DeGraaff
& Eaton 2000; Metzger et al. 2001), coupled with the noted Rθ -insensitivity of v′+,
is consistent with Townsend’s attached-eddy hypothesis (Townsend 1976; Perry &
Chong 1982; Perry & Marusic 1995; Marusic, Uddin & Perry 1997).

3.2. Vorticity-component intensities

Inner-normalized intensities of the wall-normal and spanwise vorticity fluctuations
for the present high-Rθ data are presented in this section. These are compared with
well-resolved low-Rθ vorticity-intensity data.

3.2.1. Wall-normal vorticity intensities

Inner-normalized intensities of the wall-normal vorticity fluctuations ω′+
y are shown

in figure 7. As mentioned previously, the rough-wall data were acquired within the
range 700 <y+ < 104 and the relatively-smooth-wall data were acquired within the
range 30 <y+ < 100. The previous ω′+

y data of Honkan & Andreopoulos (1997) at
Rθ = 2790 and those of Balint et al. (1991) at Rθ = 2685 as well as the previously
unpublished (∂u/∂z)′+ data of Klewicki (1989a) at Rθ = 1010 and 2870 are also
shown for comparison. The present relatively-smooth-wall data show slightly lower
magnitudes in comparison with the data of Honkan & Andreopoulos (1997) as well
as with the data of Balint et al. (1991). The (∂u/∂z)′+ data of Klewicki (1989a) at
Rθ = 2870 show very good agreement with the ω′+

y data of Honkan & Andreopoulos
(1997) and those of Balint et al. (1991). The data of Folz (1997) taken at the
SLTEST site at Rθ � 1 × 106 are also shown (however, the thermal stability was not
systematically quantified during these measurements). These data show significantly
higher values in comparison with the present data at Rθ � 2 × 106. The present near-
wall relatively-smooth-wall ω′+

y data, however, show evidence of melding with the
present six-wire and four-wire rough-wall data away from the wall. Overall, the
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Figure 8. The present high-Rθ inner-normalized spanwise-vorticity intensity profiles with, for
comparison, selected well-resolved low-Rθ data. The symbols are defined in table 3.

results in figure 7 are taken as evidence that inner normalization constitutes the
appropriate scaling for ω′

y (for the y+ and k+
s values explored).

3.2.2. Spanwise-vorticity intensities

The present inner-normalized spanwise-vorticity intensities are shown in figure 8
with, for comparison, the available ω′+

z data. The previously acquired ω′+
z data are

given in Balint et al. (1991), Wallace & Foss (1995), Klewicki & Falco (1996), Honkan
& Andreopoulos (1997) and Metzger & Klewicki (2001). A number of these studies
indicate that inner normalization is appropriate while others (e.g. Adrian, Meinhart &
Tomkins 2000) have suggested outer normalization. Spalart (1988) explored a mixed
scaling.

As can be seen in figure 8, the present high-Rθ smooth- and rough-wall ω′+
z data

within the log-law region agree quite well with previous low-Rθ data, as well as the
high-Rθ data of Metzger (2002). In contrast, the near-wall high-Rθ results of Metzger
& Klewicki (2001) show significantly larger values near the edge of the sublayer. Close
examination of the present data in figure 8 indicates some evidence of attenuation
of ω′+

z for y+ � 1000. As discussed in relation to figure 1(a), this is likely to be due
to the diminished spatial resolution of the sensor. Overall, there is no apparent effect
of surface roughness on the present ω′+

z results nor any apparent Rθ effect on ω′+
z

outside the region near the edge of the viscous sublayer.

3.3. Vorticity time scales

Mixing-length arguments often invoke the idea that the size of the eddies participating
in the generation of uv undergoes a proportional increase with distance from the wall
(Prandtl 1925). Previous high-Rθ measurements indicate that the motions contributing
to uv increase in size with increasing Rθ at a rate less than the rate of increase of
δ+ (Priyadarshana & Klewicki 2004b). As shown in (1.4), however, the wall-normal
gradient of uv can be expressed in terms of velocity–vorticity products. It is, therefore,
of interest to characterize the variation in the scales of the ωy and ωz motions with
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Figure 9. Inner-normalized wall-normal-vorticity event durations as a function of y+: �,
T +(∂u/∂z′+) at Rθ = 1010; 	, T +(∂u/∂z′+) at Rθ = 2870. All the other symbols represent
T +(ω+

y ) as defined in table 3.

increasing wall-normal distance. As described in § 2.4.3, the durations of events above
a unit r.m.s. were computed for ωy and ωz and are presented below.

3.3.1. Wall-normal-vorticity time scales

The average event durations of ωy above a unit r.m.s. were computed for the
Rθ � 2 × 106, relatively-smooth-wall k+

s ≈ 500 six-wire data and k+
s ≈ 100 four-wire

data. Figure 9 shows the inner-normalized average event duration, T +(ωy), as a
function of the distance from the wall. Inner-normalized event durations of ∂u/∂z,
computed using the data of Klewicki (1989a) at Rθ = 1010 and 2870, are also shown
for comparison. The Rθ = 2870 ∂u/∂z event durations nominally merge with the
present high-Rθ smooth-wall k+

s ≈ 100 event durations. The Rθ = 1010 ∂u/∂z event
durations are, however, significantly lower than those at Rθ = 2870. As shown, the
inner-normalized event durations of ωy for the present high-Rθ rough-wall data
exhibit considerable scatter. The ω+

y event durations for the k+
s ≈ 100 data are lower

than those for the k+
s ≈ 500 data. Overall, the data of figure 9 indicate both Rθ and

wall-roughness influences.
Figure 10 shows the ωy event durations divided by the locally defined Taylor time

scales,

λt =

√
2u′2

(∂u/∂t)′2 . (3.2)

As per the suggestion of Klewicki & Falco (1996), the ratio of the vorticity event
duration and λt produces a new function that is considerably less scattered. For
comparison, event durations of ∂u/∂z divided by λt are shown for the data of
Klewicki (1989a) at Rθ = 1010 and 2870. As shown in figure 10, the event durations
divided by λt appear to merge to a single curve that decreases with increasing y+.
More data at intermediate Rθ are required to clarify the relationship between the
Taylor time scales and the ωy event durations.



Statistical structure of velocity–vorticity products 323

100 101 102 103 104
0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

y+

Tλ(ωy)

Figure 10. Taylor-microscale-normalized wall-normal-vorticity event durations as a function
of y+: �, Tλ(∂u/∂z) at Rθ = 1010; 	, Tλ(∂u/∂z) at Rθ = 2870. All the other symbols represent
Tλ(ωy) as defined in table 3.
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Figure 11. Inner-normalized spanwise-vorticity event duration as a function of y+. The
symbols are defined in table 3.

3.3.2. Spanwise-vorticity time scales

Figure 11 shows the inner-normalized average ωz event durations as a function
of distance from the wall. The ωz event durations of Klewicki & Falco (1996) at
Rθ =1010, 2870 and 4850 are also shown for comparison. T +(ωz) for the present
relatively-smooth-wall data at Rθ � 2 × 106 remains nearly constant with increasing
y+. A very similar trend is observed in T +(ωz) for the present Rθ � 2 × 106 k+

s ≈ 500,
rough-wall results despite the scatter. The present Rθ � 4 × 106 k+

s ≈ 300 T +(ωz) data
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Figure 12. Taylor-microscale-normalized event durations of ωz as a function of y+. The
symbols are defined in table 3.

are more significantly scattered. Nevertheless, they exhibit an identifiable increase in
event durations when compared with the relatively-smooth-wall high-Rθ results. The
present high-Rθ four-wire rough-wall k+

s ≈ 100 data indicate lower values. From these
observations it is concluded that the effects of both Reynolds number and surface
roughness are at play. Overall, the smooth-wall data in this figure show that at any
fixed Rθ and outside the near-wall region (say for y+ > 50), the event durations exhibit
very little variation with y+. As is clearly shown, however, this nearly constant value
increases with increasing Rθ and k+

s .
Under outer normalization an Rθ trend opposite to that in figure 11 is observed (not

shown). This indicates that the time scale of the event durations is intermediate to
those for inner and outer scaling. As mentioned previously, Klewicki & Falco (1996)
observed this behaviour for 1000 � Rθ � 5000 and explored the previously noted ratio
of the event durations and the Taylor time scales λt . Event durations represented in
this way are shown in figure 12. As indicated, the ratio of these functions for the
present Rθ � 2 × 106 k+

s ≈ 25 ∼ 50 data and the present Rθ � 4 × 106 k+
s ≈ 300 data

appear to nominally merge into a single curve. The present Rθ � 4 × 106 k+
s ≈ 100

four-wire rough-wall ωz data, however, provide slightly higher values. Similarly, the
Rθ = 1010 data of Klewicki (1989a) show lower values. The scatter in the high-Rθ

rough-wall data, some of which may have been introduced by uncertainties in the
Uτ estimates, has been considerably reduced. Overall, the results of figures 10 and 12
support the hypothesis that λt nominally serves as a characteristic time scale for the
ωy- and ωz-bearing motions. A similar hypothesis was proposed by Falco (1977, 1983,
1991). That hypothesis was, however, based largely on the scale of vortical motions
detected using flow visualization.

3.4. Analysis of vωz signals

3.4.1. vωz statistics

As can be seen in (1.4), vωz is one of the two velocity–vorticity correlations
contributing to −∂uv/∂y. Figure 13 shows vωz

+ versus y+ for the present high-Rθ
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Figure 13. Distribution of inner-normalized vωz as a function of y+. The symbols are
defined in table 3.

smooth- and rough-wall experiments. This figure also includes the previous low-
Rθ results of Klewicki (1989b). At high-Rθ , all the data were acquired well within
the inner region (the buffer and log-law regions). The Rθ � 2 × 106 k+

s ≈ 25 ∼ 50
results exhibit positive correlations that appear to have consistency with the Rθ

trend indicated by the low-Rθ data. Conversely, the high-Rθ rough-wall data show
slightly negative correlations. The present high-Rθ four-wire data indicate more
significant negative values. Thus, for smooth-wall turbulent boundary layers, the
trend in figure 13 indicates that in the log layer vωz

+ increases with increasing Rθ

(for 103 � Rθ � 2 × 106). In relation to (1.4), the Rθ -dependence revealed in figure 13
indicates that as Rθ increases the contribution from vωz to −∂uv/∂y (for the y+

positions explored) changes from a relatively strong decelerating effect to a relatively
weak accelerating effect in the axial mean-momentum balance. The addition of
increasingly larger roughness appears to suppress this Rθ -dependence. This issue is
analysed further through the spectral analysis in § 3.4.2.

The inner-normalized intensity (vωz)
′+ of vωz is shown in figure 14. Previously

unpublished low-Rθ (vωz)
′+ data of Klewicki (1989a) are also shown for comparison.

Most of the present high-Rθ smooth- and rough-wall data in 103 < y+ < 104 show
(vωz)

′+ values around 0.02. A few six-wire-probe and four-wire data points indicate
significantly higher (vωz)

′+ values. The present high-Rθ relatively- smooth-wall data
in 100 <y+ < 1000 agree well with the low-Rθ data of Klewicki (1989a). There is
also very little Rθ -dependence between the Rθ = 2870 and Rθ = 4850 data for y+ � 30.
There are, however, significant differences exhibited by the data at Rθ = 1010. As
mentioned previously (in relation to other statistics), this may be a very-low-Rθ effect
(Rθ � 1500) (DeGraaff & Eaton 2000; Klewicki 1989a). As can be seen, the highest
(vωz)

+ fluctuations are observed in the near-wall region. In relation to the individual
v and ωz contributions, this is most likely due to the rapid increase in ω′+

z near the
wall (see figure 8), since v′+ decreases as y → 0.

Profiles for the v–ωz correlation coefficient ρvωz
are shown in figure 15. For com-

parison, the 1000 � Rθ � 5000 results of Klewicki (1989a) (previously unpublished) as
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Figure 14. Distribution of inner-normalized vωz intensity as a function of y+. The symbols
are defined in table 3.
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as a function of y+. The symbols are

defined in table 3.

well as the Rθ = 1450 results of Rajagopalan & Antonia (1993) are also shown. The Rθ -
dependences exhibited in figure 13 are further exemplified and more clearly illustrated
here. The present Rθ � 2 × 106 relatively-smooth-wall ρvωz

results are positive, reaching
a significant magnitude near 0.2. Conversely, almost all the present Rθ � 2 × 106

k+
s ≈ 500 results are negative, with values near −0.4. The present k+

s ≈ 100 four-wire
data show negative correlation coefficients around −0.2. Notable features in figure 15
are (a) an apparent merging of the ρvωz

profiles for different Rθ for y+ � 15, (b) the
relatively large values of |ρvωz

| in the log layer (at any Rθ , but especially at low-Rθ ) and
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(c) the aforementioned change in sign of ρvωz
at high Rθ . In relation to scale-separation

effects, the third of these is particularly significant, since it depends upon the degree
of interaction between the v and ωz fluctuations. This issue is further addressed in
the spectral analyses below. The high-Rθ k+

s ≈ 500 data exhibit significantly negative
values. On the basis of the observed sensitivity of v′+ to roughness relative to that of
ω′+

z (see figures 4 and 8 respectively), it is anticipated that this observed sensitivity
of vωz is derived more from the modification of the velocity field than the vorticity
field.

3.4.2. Spectral structure of vωz

Spectral analyses of v and ωz are presented in this section. The inner-normalized
wall-normal-velocity power spectra Φ+(v) and the inner-normalized spanwise-vorticity
power spectra Φ+(ωz) were computed using the method explained in § 2.4.4. These
power spectra were multiplied by the inner-normalized streamwise wavenumber k+ to
obtain the premultiplied power spectra of v and ωz, Ψ +(v) and Ψ +(ωz), respectively.
The inner-normalized wavenumber was computed using

k+ = 2π
f

+

U+
, (3.3)

where U
+
(= U/Uτ ) is the inner-normalized mean advection velocity and f +(= f ν/

U 2
τ ) is the inner-normalized frequency. The methods described in § 2.4.4 were also

used to compute the cospectrum of v and ωz, Λ+(vωz), and the premultiplied
cospectrum, k+Λ+(vωz). Figure 16(a–d) shows Ψ +(v), Ψ +(ωz) and k+Λ+(vωz) at
a wall-normal location near yp/2 for Rθ = 2870, Rθ = 4850, Rθ � 2 × 106, k+

s ≈ 25 ∼ 50,
and Rθ � 4 × 106, k+

s ≈ 300. As previously mentioned, yp is the estimated wall-normal
position of the peak in −uv +. The abscissa in figures 16(a–d) is the inner-normalized
wavenumber k+ and the ordinate is the premultiplied spectral density.

As shown in figure 16(a), Ψ +(v), and Ψ +(ωz) for Rθ = 2870 lie nearly on top of each
other at yp/2. The peaks in these spectra occur at slightly lower wavenumbers than
the inner-normalized Taylor wavenumber, 2π/λ+ = k+

λ ≈ 0.07. Figure 16(a) indicates
that k+Λ+(vωz) inversely tracks Ψ +(ωz) for wavenumbers � k+

λ . Starting at scales
slightly larger than the peak in Ψ +(ωz), v and ωz exhibit a strong negative correlation
that is large compared with the positive correlations at higher wavenumber. The
results for Rθ =4850 are similar to those at Rθ = 2870. For Rθ = 4850, Ψ +(v) and
Ψ +(ωz) closely track each other at yp/2. The behaviour of k+Λ+(vωz) is also similar.
The small-scale motions of the v ωz product (having wavenumbers near the peak in
Ψ +(ωz); see curve (r)), however, exhibit a larger positive peak than that at Rθ = 2870.

The results near yp/2 for Rθ � 2 × 106, k+
s ≈ 25 ∼ 50 and for Rθ � 4 × 106, k+

s ≈ 300
are presented in figures 16(c) and 16(d), respectively. The behaviour of Ψ +(ωz)
changes somewhat at high-Rθ . Most notably, the peak in Ψ +(ωz) at high-Rθ occurs
at a wavenumber slightly higher than kλ. The apparent effects of wall roughness
on k+Λ+(vωz) for Rθ � 2 × 106, k+

s ≈ 25 ∼ 50 are minimal when compared with those
at Rθ � 4 × 106, k+

s ≈ 300. As shown in figure 16(c), k+Λ+(vωz) at yp/2 nominally
tracks Ψ +(ωz) at all wavenumbers. The peak of k+Λ+(vωz) is very close to the peak
of Ψ +(ωz), which occurs near k+

λ . At relatively low wavenumbers k+Λ+(vωz) shows
some evidence of tracking Ψ +(v) near its peak. The magnitudes of k+Λ+(vωz) are,
however, relatively small at low k+. Thus, at yp/2, the high-Rθ relatively-smooth-wall
flow has its peak contribution to vωz near k+

λ . This finding is very similar to that
previously reported by Priyadarshana & Klewicki (2004a).
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Figure 16. Premultiplied power spectra Ψ +(v) and Ψ +(ωz) of v+ and ω+
z and premulti-

plied cospectra k+Λ+(vωz) of v+ and ω+
z , near yp/2: (p), Ψ +(v); (q), Ψ +(ωz); (r), k+Λ+(vωz).

(a) Rθ = 2870, smooth-wall (y+ = 30); (b) Rθ = 4850, smooth-wall (y+ = 38); (c) Rθ � 2 × 106,
k+
s ≈ 25 ∼ 50 (y+ = 660); (d) Rθ � 4 × 106, k+

s ≈ 300 (y+ = 1030).

As shown in figure 16(d), the above behaviour changes significantly at yp/2 with
the introduction of wall roughness (k+

s ≈ 300). Note that at this Reynolds number, yp

(y+ = 1030) is estimated to be near the edge of the roughness sublayer. The Ψ +(ωz)
and Ψ +(v) results in figure 16(d) are very similar to those in figure 16(c). Similarly,
the high-wavenumber portion of the rough-wall k+Λ+(vωz) is similar to that for the
relatively-smooth-wall data at Rθ � 2 × 106, in that it nominally tracks Ψ +(ωz). At low
wavenumbers, however, k+Λ+(vωz) exhibits a large negative peak at a wavenumber
very close to the peak of Ψ +(v). Thus, at yp/2 the larger-scale motions of v and
ωz tend to correlate negatively with increasing wall roughness. The area under the
negative portion of k+Λ+(vωz) is significantly greater than the positive portion of
k+Λ+(vωz) and, thus, vωz

+ and ρvωz
are negative (see figures 13 and 15).

The premultiplied v and ωz spectra and cospectra near 2yp are shown in figure 17.
As can be seen, the premultiplied spectra at 2yp differ considerably from those at
yp/2. This said, it should be noted that yp/2 is within the buffer layer at Rθ = 2870
and 4850. (Note that, at higher Rθ , yp/2 is in the log-law region.) The location of
2yp is in the log layer for all Rθ . At this location, the peaks in Ψ +(v) and Ψ +(ωz)
achieve about 0.2 decades of scale separation at Rθ = 4850 and slightly less than that
at Rθ =2870. It is also interesting to note that the peak in Ψ +(ωz) is located near the
Taylor wavenumber at Rθ = 4850 and at a slightly lower k+ value at Rθ = 2870. At
both Reynolds numbers, the position of the negative peak in k+Λ+(vωz) closely tracks
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Figure 17. Premultiplied power spectra Ψ +(v) and Ψ +(ωz) of v and ωz and premultiplied
cospectra k+Λ+(vωz) of v+ and ω+

z , near 2yp: (p), Ψ +(v); (q), Ψ +(ωz); (r), k+Λ+(vωz). (a) Rθ =

2870, smooth-wall (y+ = 120); (b) Rθ = 4850, smooth-wall (y+ = 143); (c) Rθ � 2 × 106,
k+
s ≈ 25 ∼ 50 (y+ = 4010); (d) Rθ � 4 × 106, k+

s ≈ 300 (y+ = 3800).

the position of the positive peak of Ψ +(v). This occurs at a wavenumber 0.4 ∼ 0.5
decades lower than the Taylor wavenumber.

Figure 17(c) reveals that the behaviour of the high-Rθ relatively-smooth-wall
k+Λ+(vωz) is significantly different at 2yp . There is a relatively-low-wavenumber
peak in k+Λ+(vωz) that appears to nominally track the peak of Ψ +(v). Unlike the
low-Rθ results, however, this peak is positive. Consistently with the results at yp/2,
there is also a small second peak of k+Λ+(vωz) at high wavenumber. The amplitude
of this second peak is significantly attenuated relative to that at yp/2. Thus, in
the high-Rθ relatively-smooth-wall flow, the peak contribution to vωz

+ shifts from
relatively small scales to relatively large scales for a shift in the wall-normal location
from yp/2 to 2yp . It is, however, important to note that the peak in Ψ +(v) is still at a
wavenumber that is at least an order of magnitude higher than the wavenumber of the
peak in Ψ +(u) (Priyadarshana & Klewicki 2004b). The rough-wall k+Λ+(vωz) exhibits
similarities to that at yp/2. As shown in figure 17(d), the low-wavenumber motions of
v and ωz are negatively correlated, giving a negative peak similar to that observed at
yp/2. The amplitude of the high-wavenumber peak in k+Λ+(vωz) is reduced similarly
to that under the smoother wall condition. Overall, the high-wavenumber peak in the
high-Rθ rough-wall k+Λ+(vωz) tracks Ψ +(ωz).

The wavenumbers at which the smooth-wall premultiplied power spectra attain their
peak values were obtained using a third-order polynomial curve-fit in the vicinity of
the peak. Here, k+

max(Ψ +(v)) and k+
max(Ψ +(ωz))

are the inner-normalized wavenumbers at
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Figure 18. Variation in k+
max(Ψ +(ωz))

/k+
max(Ψ +(v)) as a function of Rθ . The symbols are defined

in table 3. (a) Variation near yp/2. The curve-fit shown is k+
max(Ψ +(ωz))

/k+
max(Ψ +(v)) =

1.55 log Rθ − 4.2. (b) Variation near 2yp . The curve-fit shown is k+
max(Ψ +(ωz))

/k+
max(Ψ +(v)) =

13.3 log Rθ − 45.4.

which Ψ +(v) and Ψ +(ωz) peak, respectively. To quantify scale-separation effects on
the momentum transport, the ratio of these two wavenumbers, k+

max(Ψ +(ωz))
/k+

max(Ψ +(v)),
was plotted against Rθ as shown in figure 18. Figure 18(a) describes the variation in
k+

max(Ψ +(ωz))
/k+

max(Ψ +(v)) as a function of Rθ at yp/2 and figure 18(b) describes the same
at 2yp . As shown, both variations for low-Rθ smooth-wall and high-Rθ relatively-
smooth-wall data are nominally fitted by a logarithmic relationship. Obviously, more
intermediate Rθ data are required to clarify fully this Rθ -dependence.

3.5. Analysis of wωy signals

This section describes the statistics and spectra of the w and ωy fluctuations. The data
used in these studies were acquired using the six-element v-array probe and four-wire
probes. The data from the six-element v-array probe were acquired under rough-wall
conditions at Rθ � 2 × 106 with an inner-normalized wall roughness of k+

s ≈ 500 and
under relatively-smooth-wall conditions at Rθ � 2 × 106 with k+

s � 25 ∼ 50. The data
from the four-wire probes were acquired at Rθ � 4 × 106 with an inner-normalized
wall roughness of k+

s ≈ 100.

3.5.1. Analysis of wωy statistics

The present wωy
+ data are shown in figure 19. The near-wall Rθ � 2 × 106 data

(k+
s ≈ 25 ∼ 50) show negative wωy

+ values around −0.07 ∼ − 0.06 in the region
40 <y+ < 70. These data continue to increase significantly for y+ > 100 and meld into
the Rθ � 2 × 106 k+

s ≈ 500 data that cross zero near y+ = 700. A very similar trend
is observed in the present four-wire k+

s ≈ 100 data. The previous wωy
+ estimates

of Klewicki (1989b) and the low-Rθ DNS data of Crawford & Karniadakis (1997)
are also shown for comparison. The wωy

+ profiles of Klewicki (1989b) were derived

using the available vωz
+ and −∂(uv)

+
/∂y+ data. The data of Crawford & Karniadakis

(1997) at ReH = 5000, where H is the channel height and ReH is the Reynolds number
based on the channel height, show a negative peak at y+ � 10 and follow the Rθ = 2870
and 4850 profiles of Klewicki (1989b). Similarly, the present relatively-smooth-wall
and rough-wall high-Rθ data follow the indicated trend. Again, the near-wall data
of Klewicki (1989b) at Rθ = 1010 show some scattered behaviours. These could be
very-low-Rθ effects or the uncertainties associated with obtaining wωy

+ estimates.
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Figure 19. Distribution of inner-normalized wωy as a function of y+. The symbols are
defined in table 3.
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Figure 20. Distribution of inner-normalized wωy intensity as a function of y+. The symbols
are defined in table 3.

The inner-normalized intensity (wωy)
′+ of wωy is shown in figure 20. As indicated,

the largest values of (wωy)
′+ are observed in the relatively-smooth-wall data closer to

the wall. The intensity decreases with increasing y+. The rough-wall data follow the
same trend away from the wall. Furthermore, the present k+

s ≈ 500 rough-wall data
agree well with the present k+

s ≈ 100 four-wire data. Overall, the behaviour of (wωy)
′+

is similar to that displayed by (vωz)
′+, discussed in § 3.4.1.
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Figure 21. The correlation coefficient ρwωy
as a function of y+. The symbols are

defined in table 3.

The profiles of the w–ωy correlation coefficient ρwωy
are shown in figure 21. The

negative and positive correlations between w and ωy exhibited in figure 19 are further
exemplified and more clearly illustrated in this figure. Near the wall, these results show
strong negative correlations, attaining values near −0.3. Conversely, all the present
Rθ � 2 × 106 k+

s ≈ 500 ρwωy
results away from the wall are positive, with values near

0.2. The zero crossing in the correlation coefficient is at around y+ = 1000 and thus
occurs relatively close to y+

p . A zero crossing in wωy
+ at y+

p is consistent with (1.4),
in that ∂uv/∂y changes sign as well. This issue is further addressed in the spectral
analyses below in § 3.5.2.

3.5.2. Spectral analysis of wωy

Spectral information associated with w and ωy is presented in this section. As
before, the inner-normalized spanwise-velocity power spectra Φ+(w) and the inner-
normalized wall-normal-vorticity power spectra Φ+(ωy) were computed using the
method explained in § 2.4.4. These power spectra were multiplied by the inner-
normalized wavenumber k+ to obtain the premultiplied power spectra Ψ +(w) and
Ψ +(ωy). The same methods were used to compute the inner-normalized cospectrum
Λ+(wωy) and the premultiplied inner-normalized cospectrum k+Λ+(wωy).

Figure 22(a, b) shows Ψ +(w), Ψ +(ωy) and k+Λ+(wωy) at wall-normal locations
near yp/2 and 2yp for Rθ � 2 × 106, k+

s ≈ 500. As shown in figure 22(a), Ψ +(ωy) has
a peak at a slightly higher wavenumber than k+

λ and Ψ +(w) has a peak around
k+ � 10−3, which is very close to the peaks of Ψ +(v) shown in figures 16(c) and 16(d).
The peak wavenumbers of Ψ +(w) and Ψ +(ωy) are separated by at least two orders
of magnitude. Figure 22(a) indicates that k+Λ+(wωy) inversely tracks Ψ +(ωy). This
is similar to the behaviour of k+Λ+(vωz) at Rθ � 2 × 106. The tracking is, however,
positively correlated in the vωz case.

Near 2yp the peak in Ψ +(w) moves to lower wavenumbers, while the peak in Ψ +(ωy)
remains near the Taylor wavenumber. The premultiplied cospectrum k+Λ+(wωy) has
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Figure 22. Premultiplied power spectra Ψ +(w) and Ψ +(ωy) of w and ωy and premultiplied
cospectra k+Λ+(wωy) of w+ and ω+

y at wall-normal locations (a) yp/2 and (b) 2yp: (p), Ψ +(w);

(q), Ψ +(ωy); (r), k+Λ+(wωy). (a) Re � 2 × 106, k+
s ≈ 500, yp/2 (y+ = 924). (b) Re � 2 × 106,

k+
s ≈ 500, 2yp (y+ =4200).
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Figure 23. Distribution of inner-normalized uωz as a function of y+. The symbols are
defined in table 3.

two positive peaks at 2yp . One peak tracks Ψ +(ωy) and the other peak tracks Ψ +(w).
This behaviour is the underlying reason why wωy

+ is positive for y >yp .

3.6. Analysis of uωz signals

Statistics and spectral analyses were conducted in relation to the u and ωz signals for
the same Rθ and wall-roughness conditions as in the vωz and wωy analyses.

3.6.1. Analysis of uωz statistics

The distributions of uωz
+ with y+ are shown in figure 23 for the present high-Rθ

data. These results are compared with the low-Rθ results of Klewicki (1989b). The
present six-wire high-Rθ data meld smoothly with the low-Rθ data regardless of the
surface roughness. As noted by Klewicki (1989b), the Rθ = 1010 results show a small
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Figure 24. Distribution of inner-normalized uωz intensity as a function of y+. The symbols
are defined in table 3.

deviation from the other curves in the buffer layer. Other than this, there are no
apparent effects of surface roughness and/or Rθ in uωz

+ for the k+
s , y+ and Rθ con-

ditions explored.
The present high-Rθ inner-normalized intensity (uωz)

′+ of uωz is shown in figure 24.
Previously unpublished results of Klewicki (1989a) are also given, for comparison.
Similarly to the (vωz)

′+ and (wωy)
′+ results, the largest values of (uωz)

′+ are observed
in the near-wall region. As shown, the present six-wire high-Rθ data in the log-law
region tend to meld into the Rθ =2870 and 4850 data near y+ =100. The present
four-wire data show higher (uωz)

′+ values. As with uωz
+, it may be concluded that

the inner-normalized (uωz)
′ is not very sensitive to Rθ or the surface roughness.

The u–ωz correlation coefficient, ρuωz
is presented in figure 25. The results of

Rajagopalan & Antonia (1993) at Rθ = 1450 nominally agree with those of Klewicki
(1989a) at Rθ = 1010. Both these profiles show strong negative values in the buffer
layer. Farther from the wall these data exhibit a positive peak in the range 0.1 ∼ 0.15.
With increasing Rθ , this peak value decreases. The present high-Rθ ρuωz

data are
scattered. The data centre around 0.1 in the log layer. In this regard, it is worth
noting that while the four-wire-probe results (the + symbols) show distinctly higher-
magnitude values of (uωz)

′+ than the six-wire results, the uωz
+ and ρuωz

results from
the two sensors are in very good agreement. The origin of the apparent proportional
increase in (uωz)

′+ from the four-wire probe is, at present, unknown. Overall, there is
very little apparent effect of surface roughness on ρuωz

.

3.6.2. Spectral analysis of uωz

Figure 26(a–d) shows the inner-normalized premultiplied power spectra Ψ +(u)
and Ψ +(ωz) and the inner-normalized premultiplied cospectra k+Λ+(uωz) near yp/2.
As shown in figure 26(a), Ψ +(u) for Rθ = 2870 and yp/2 peaks at a relatively
low wavenumber whereas, as shown previously, Ψ +(ωz) peaks near the Taylor
wavenumber. Even at this low-Rθ , the inner-normalized wavenumbers of these two
peaks are separated by about one decade. The cospectra at Rθ = 2870 has two peaks:
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Figure 26. Premultiplied power spectra Ψ +(u) and Ψ +(ωz) of u+ and ω+
z and premultiplied

cospectra k+Λ+(uωz) of u+ and ω+
z near yp/2: (p), Ψ +(u); (q), Ψ +(ωz); (r), k+Λ+(uωz).

(a) Rθ = 2870, smooth-wall (y+ = 30); (b) Rθ = 4850, smooth-wall (y+ =38); (c) Rθ � 2 × 106,
k+
s ≈ 25 ∼ 50(y+ = 660); (d) Rθ � 4 × 106, k+

s ≈ 300 50 (y+ = 1030).
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Figure 27. Premultiplied power spectra Ψ +(u) and Ψ +(ωz) of u and ωz, and premultiplied
cospectra k+Λ+(uωz) of u+ and ω+

z , at wall-normal location of 2yp: (p), Ψ +(u); (q) Ψ +(ωz); (r),

k+Λ+(uωz). (a) Rθ = 2870 (y+ = 120); (b) Rθ = 4850 (y+ = 143); (c) Rθ
∼= 2 × 106, k+

s ≈ 25 ∼ 50
(y+ = 4010); (d) Rθ

∼= 4 × 106, k+
s ≈ 300 (y+ = 3800).

the positive peak nominally aligns with the peak in Ψ +(u), and the negative peak
nominally aligns with the peak in Ψ +(ωz). A largely similar behaviour is observed
at Rθ = 4850. In this case, the negative peak in k+Λ+(uωz) is of significantly higher
amplitude. Similarly to k+Λ+(uωz) at Rθ = 2870, the low-wavenumber motions of u

and ωz are positively correlated.
For the high-Rθ cases, the peak in Ψ +(u) shifts to significantly lower wavenumbers.

In direct contrast with the negative correlation at low-Rθ , all the high-wavenumber
motions of u and ωz in figure 26(c) are highly positively correlated. Recall that
uωz

+ ≈ 0 for all Rθ values at this wall-normal location; see figure 23. The results in
figure 26(d) are very similar to those in figure 26(c) specifically relating to the positive
correlations at high wavenumbers and negative correlations at low wavenumbers.

Figure 27(a–d) shows Ψ +(u), Ψ +(ωz) and k+Λ+(uωz) near 2yp . In concert with
the previously noted shift in Ψ +(ωz) towards higher wavenumbers, the peaks in
Ψ +(u) move to even lower wavenumbers owing to the prevalence of relatively lower-
wavenumber u-motions with increasing y. The Rθ = 2870 results reveal a broad peak
in k+Λ+(uωz), nominally positioned between the two peaks of Ψ +(u) and Ψ +(ωz).
At Rθ = 4850, k+Λ+(uωz) exhibits a single dominant negative peak that nominally
mirrors the shape of Ψ +(ωz).

Figure 27(c–d) shows Ψ +(u), Ψ +(ωz) and k+Λ+(uωz) at 2yp for Rθ � 2 × 106 and
Rθ � 4 × 106. For Rθ � 2 × 106, k+Λ+(uωz) in figure 27(C) is different from that at yp/2,
with little or no wavenumber range of negative correlation. In contrast, the k+Λ+(uωz)
data in figure 27(D) continue to show negative correlations at low wavenumbers.
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Figure 28. Variation in k+
max(Ψ +(ωz))

/k+
max(Ψ +(ωu))

as a function of Rθ . The symbols are defined in

table 3. (a) Variation at yp/2. The curve-fit shown is k+
max(Ψ +(ωz))

/k+
max(Ψ +(u)) = 135.0 log Rθ −

475.8. (b) Variation at 2yp . The curve-fit shown is k+
max(Ψ +(ωz))

/k+
max(Ψ +(u)) = 208.8 log Rθ −704.3.

Similarly to the analysis in § 3.4.2, the wavenumbers at which the premultiplied
power spectra indicate peaks were obtained for all the smooth-wall data; k+

max(Ψ +(u)) is

the inner-normalized wavenumber at which Ψ +(u) peaks and k+
max(Ψ +(ωz))

is the inner-

normalized wavenumber at which Ψ +(ωz) peaks. The plot of the ratio of these two
wavenumbers versus Rθ is shown in figure 28. There is a significant scale separation
for the Rθ � 2 × 106 data at yp/2, as shown in figure 28(a). This observation is
different from that for the power spectra of v and ωz shown in figure 18(a). There
is an increase in scale separation at 2yp . This increase is, however, less than an
order of magnitude. The variations of k+

max(Ψ +(ωz))
/k+

max(Ψ +(u)) for low-Rθ smooth-wall
and high-Rθ relatively-smooth-wall data are approximately logarithmic. Again, more
intermediate Rθ data are required to clarify these trends.

4. Discussion
4.1. Cospectral properties under increasing scale separation

The present measurements have revealed a number of specific results, and these are
succinctly listed and discussed in the conclusions section below. As indicated in the
introduction, however, an over-arching motivation for this study was to understand
better the effects of scale separation on the transport mechanisms of wall turbulence.
The present approach has been to explore these mechanisms through the study of the
velocity–vorticity products associated with (1.4) and (1.6). In this regard it is useful to
reiterate briefly and then discuss further the attributes and relevance of this approach
to studying scale-separation effects.

As explained in §§ 3.4.2, 3.5.2 and 3.6.2, the respective properties of velocity and
vorticity spectra embody naturally instructive attributes with regard to assessing the
effects of scale separation. Specifically, with increasing Reynolds number the peaks
of the premultiplied velocity power spectra move, at varying rates depending on the
component, to increasingly low wavenumbers relative to the peaks in the premultiplied
vorticity power spectra. Through this effect, the premultiplied power spectral densities
inherently display the influences of scale separation.

According to (1.4), however, it is also true that the relevant velocity and vorticity
components must combine to generate a non-zero correlation if, for example, the
Reynolds stress-gradient term in (1.1) is to effect a time rate of change of mean
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Figure 29. View of how increasing scale separation (associated with increasing Reynolds
number) was initially anticipated to be reflected in the velocity–vorticity spectra and cospectra.
Under this view the cospectral peak remains centred on the overlapping region of the
participating velocity- and vorticity-component spectra at all Reynolds numbers. (a) Low
Reynolds number, (b) high Reynolds number.

momentum. Given that the integral of the cospectrum is the covariance, the weighting
of the area under the cospectral curve, relative to the weighting of the individual
velocity and vorticity spectra, provides a rather direct way of exposing how Reynolds-
number-induced scale separation influences the mean transport. In this regard, one
rational expectation relating to the correlation might be that the relevant velocity and
vorticity components will interact most significantly over the range of wavenumbers
common to both spectra. Model spectra depicting such a situation are shown in
figures 29(a) and 29(b) for large and small scale separation, respectively. As depicted,
the peaks in the contributing velocity and vorticity spectra move to disparate
wavenumbers, while the non-zero portion of the cospectrum remains centred on
the overlapping portions of the individual spectra. At low Reynolds number there is
minimal scale separation between the velocity and vorticity fields. Under the model
picture shown in figure 29(a) the overlapping portion of these spectra is significant at
low Reynolds number, and thus from these data alone one cannot reliably associate
the cospectral peak with the region of spectral overlap. At high Reynolds number,
owing to significant scale separation this association between the region of spectral
overlap and the predominant contributions to the cospectra becomes apparent.

While the influences of scale separation indicated in figure 29(a) are consistent
with the notion that similar-wavenumber motions will interact most vigorously, the
evolution of the spectra with Reynolds number depicted in this figure is generally not
consistent with the present findings. As indicated by figures 16, 17, 22, 26 and 27, the
effects of scale separation, appear most distinctly, as illustrated further in figure 30.
Specifically, when there is significant scale separation the cospectrum generally
does not peak in a range of intermediate wavenumbers common to the velocity
and vorticity spectra but rather has separate maxima near to those in the
respective velocity and vorticity spectra. These observations are taken to indicate
that there is a ‘scale selection’ that occurs at wavenumbers near the peaks of the
participating velocity and vorticity components. Effectively, for the high-wavenumber
cospectral peak, high-amplitude vorticity-field fluctuations interact with relatively-
small-amplitude velocity-field fluctuations (i.e. they select the velocity-field scales local
to the Ψω peak) to produce a considerable contribution to the overall correlation.
Similarly, at low wavenumbers the roles are reversed and there is a velocity-field
selection of the available low-amplitude vorticity-field fluctuations near the ΨV peak.
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Figure 30. Illustration of how increasing scale separation is most generically reflected in
the velocity and vorticity spectra and cospectra. The actual observations indicate that the
cospectral peaks nominally track the individual spectral peaks of the corresponding velocity
and vorticity components. (a) Low Reynolds number, (b) high Reynolds number.

4.2. Physical interpretations

A broadly prevalent notion to emerge from turbulent-structure studies is that
coherent-motion dynamics account for a disproportionate contribution to the overall
transport of momentum. In this regard, spatially compact vortical motions provide
an appropriate context in which to interpret, at least partially, the present results. As
depicted in figure 30, the high-wavenumber peak in the velocity–vorticity cospectrum
tends to correlate strongly with the maximum in the vorticity spectrum. The
characteristic interaction here is taken to be that between a high-intensity patch
of the vorticity field and a relatively-low-intensity velocity fluctuation. In this case
the contribution to ΛV ω comes from velocity–vorticity interactions local to spatially
concentrated patches of advecting vorticity (i.e. local to an advecting vortical motion).
Conversely, the characteristic interaction underlying the low-wavenumber peak in the
cospectrum is that between a high-amplitude velocity fluctuation and a relatively-low-
intensity vorticity fluctuation. The physical interpretation in this regard builds largely
upon the previous observations of Adrian and his coworkers; see below. In this case,
the velocity-field interaction is with a low-wavenumber vortical motion that has asso-
ciation with the large-scale spacing of smaller-scale vortical motions. This is depicted
in figure 31, which is in large part a schematic interpretation of the instantaneous
particle image velocimetry (PIV) observations of Meinhart & Adrian (1995).

As might be expected from the relatively large spatial scales involved, wall-layer
flow-field quantifications associated with phenomena of the type represented in
figure 31 are scarce and, to date, none have explored explicitly the velocity–
vorticity-field interactions relevant to (1.2). Recent PIV-based studies do, however,
provide insight into how such interactions might be realized. In fact, the findings of
Meinhart & Adrian (1995), schematically depicted in figure 31, revealed the existence
of large-scale zones of nearly constant axial momentum that are segregated by
relatively narrow ‘fissures’ of highly vortical flow. (Note that these localized highly
vortical regions will individually undergo the high-intensity interactions noted above.)
Owing to the fact that adjacent zones are of differing momentum (i.e. an increment in
momentum is sustained across the vortical fissures), it is conjectured that a low-
wavenumber but small-amplitude contribution to the vorticity field is produced
when such a spatial structure advects past a stationary probe. Thus, in this way
the large-scale organization of small-scale highly vortical motions generates low-
intensity low-wavenumber vortical motions that correlate with the spatially coincident
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Figure 31. Schematic depiction of a large-scale organization of locally concentrated vorticity
that could lead to the observed low-wavenumber peak in the velocity–vorticity cospectra. The
flow is from left to right with the sense of the mean vorticity into the page. The central features
of this depiction are zones of approximately uniform momentum intermittently segregated by
narrow fissures of highly vortical flow, as first observed by Meinhart & Adrian (1995).
Mounting evidence indicates that this physical picture is established in connection with the
hierarchical formation of hairpin-like vortex packets (Meinhart & Adrian 1995; Adrian et al.
2000; Hutchins & Marusic 2006).

high-intensity low-wavenumber velocity-field perturbations associated with the uni-
form momentum zone itself.

Indeed, perhaps the most significant result to come out of recent PIV-based studies
is the recognition that wall-layer hairpin-like vortices self-organize into packets
and that these packets largely constitute the vortical ‘skeleton’ that supports the
much-larger-scale zones of uniform momentum (Adrian, Meinhart & Tomkins 2000;
Ganapathisubramani, Longmire & Marusic 2003). This hypothesized mechanism,
by which transport at high wavenumbers generates and maintains low-wavenumber
phenomena, has similarities to that observed and theoretically verified in relation to
the evolution of passive scalar spectra in pipe-flow mixing (Kerstein & McMurtry
1994; Guilkey et al. 1997). In the present case, however, the variables are dynamically
active, and thus this mechanism illustrates more broadly how interactions across
disparate wavenumbers might be dynamically significant.

The physical picture just described also has noteworthy and self-consistent
connections with behaviours anticipated to occur with increasing Reynolds number as
well as with increasing distance from the wall at fixed Reynolds number. The first is the
expectation that the low-wavenumber cospectral peak of the type observed will emerge
only after a sufficient scale separation is established between the participating velocity
and vorticity components. (Note that this appears to depend predominantly on the
appearance of an increasingly low-wavenumber peak in the velocity component; see
below.) Physically, this would only be expected to occur after a sufficient hierarchy
of uniform momentum zones (and/or vortex packets) has been established. An
increasing number of larger-scale hierarchy members is a central observation relating
to the effect of an increase in Reynolds number and/or distance from the wall
at fixed Reynolds number (Adrian et al. 2000). Figures 18 and 28 quantify this
effect. The second relates to the primary attribute of a boundary layer as a region
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where viscous effects, though never entirely negligible, occupy a diminishingly smaller
fraction of the flow domain with increasing Reynolds number. This attribute is
captured in the instantaneous structure of the present model through viscous effects
remaining important in the vortical fissures that segregate the uniform momentum
zones and thus are responsible for the momentum increment from zone to zone
and the associated (hypothesized) low-wavenumber contribution to the vorticity field.
With increasing Reynolds number the present physical model predicts that these
vortical fissures should occupy a decreasingly smaller fraction of the overall volume
within the boundary layer. The nominal invariance of the vorticity spectra under
Taylor normalization supports this notion.

While the above discussion provides a description of how the different scales
of motion in the velocity and vorticity fields might interact to generate the
features observed in the cospectra, the specific interactions between the velocity
and vorticity components and their associated dynamical significance are far from
being well understood. Generically, however, it is rational to expect that during the
spatiotemporal evolution of any given vortical motion the linear momentum in the
boundary layer will either increase or decrease. The average of these interactions
at any given distance from the wall then leads to the net source or sink nature of
the Reynolds-stress gradient as it pertains to the time rate of change of the mean
momentum; see (1.5). In this context, the coherent vortical-motion dynamics are
effectively reduced to the question whether the result of the interaction imparts or
extracts linear momentum. For example, the average interaction for y <yp is source-
like, i.e. −∂uv/∂y is positive. Similarly, because they predominantly occur in the
region y > yp , a large subset of the interactions depicted in figure 31 are anticipated
to have a net sink-like effect.

4.3. Some comments on combined effects of roughness and Reynolds number

The combined effects of high Reynolds number and significant wall roughness are
inherent to a number of the experiments presented herein. Thus, while far from
constituting a comprehensive study, some of the present observations are worth
referencing to Townsend’s similarity hypothesis (Townsend 1976), which, succinctly,
states that outside the roughness sublayer the properties of the turbulence become
independent of the roughness, as well as recent laboratory studies of rough-wall
flows. Specifically, the results of Krogstad et al. (1992) for boundary layers over
periodic bars and/or meshes do not support Townsend’s hypothesis since these
authors discerned roughness effects in velocity-fluctuation statistics (especially in the
v-component) well outside the roughness sublayer. Conversely, the u and v statistical
profiles of Flack et al. (2005) for boundary layers over fully rough (k+

s > 100) sandgrain
roughness strongly support Townsend’s hypothesis by exhibiting invariance outside
the roughness sublayer (� 5ks) under inner normalization when plotted versus y/δ. In
connection with this, Flack et al. (2005) qualified these observations with the proviso
that δ/ks > 40, which, of course, is effectively a statement about scale separation. Even
more recently, Bakken et al. (2005) presented results from a symmetrically roughened
channel (again over bars and meshes) and showed that the results are largely in
accord with Townsend’s similarity hypothesis. From these results, they surmised that
an asymmetry of boundary conditions is the source of previous observations that are
contrary to Townsend’s hypothesis.

Regarding the present measurements, it is important to note that the roughness at
the SLTEST site is much more like a randomly distributed, sandgrain type roughness
than regular bars or meshes. Relative to sandgrain roughness, however, the playa
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naturally contains a considerably broader spectrum of roughness amplitudes and
wavelengths. It is also relevant to recognize that, unlike the lower-Reynolds-number
studies of Krogstad et al. (1992), Flack et al. (2005) and Bakken et al. (2005), positions
outside the roughness sublayer of even the present k+

s =500 flow are still very deep
within the inner layer (i.e. δ/ks for this flow is about 2000). With these considerations
in mind, the present results indicate that outside the roughness sublayer the u′+ profile
exhibits a clear Reynolds-number dependence while at most only a mild sensitivity
to roughness. Conversely, the v′+ profile is invariant with Reynolds number (above
a low-Reynolds-number regime) but exhibits a discernible sensitivity to roughness.
Lastly, neither the ωy

′+ nor the ωz
′+ data reveal any discernible effect of roughness

or Reynolds number under inner normalization.
The observed sensitivities to surface roughness are difficult to attribute to the

asymmetric-boundary-condition effect proposed by Bakken et al. (2005). Specifically,
measurements over the past decade indicate that wall-layer-turbulence statistics at
the SLTEST site exhibit remarkable consistency from experiment to experiment.
Of course, the ‘freestream’ flow for the atmospheric surface layer is the so-called
mixed layer. The horizontal mean flow in the mixed layer is near to being uniform,
but the turbulence is non-negligible. From experiment to experiment, however, one
can be virtually assured that this freestream condition varies. Therefore, given that
this variable-freestream condition does not cause detectable effects on the near-
surface turbulence statistics, it is difficult to imagine how roughness located at a
remote opposing wall might remove such an effect. However, the present sensitivities
to a distributed type of roughness are also counter to the observations of Flack
et al. (2005) over sandgrain roughness. One plausible means of reconciling this
apparent disagreement is via the notion that the roughness problem is Reynolds-
number dependent. More specifically, there may be roughness regimes for k+

s � 1
and ks/δ � 1 that, by definition, only become apparent under the condition of large
scale separation. In any case, the present observations that the vorticity intensities are
insensitive to roughness (and Reynolds number) while the velocity intensities are not,
provide support to the notion that the characteristic scale of the motion affects their
sensitivity to roughness.

4.4. Additional observations

Regarding the above interpretations, a few additional comments and observations are
worth noting.

The spectral analyses clearly reveal that the effects of scale separation occur at
different rates with increasing Reynolds number depending on the velocity–vorticity-
component combinations involved. For example, the spectral peaks of Ψ (u) and Ψ (ωz)
are separated by about a decade in wavenumber even at δ+ � 1500, while at the same
Reynolds number the spectral peaks of Ψ (v) and Ψ (ωz) are nearly coincident. The
rate of scale separation for Ψ (w) and Ψ (ωy) appears to be intermediate to these
two extremes. Thus, the effects of scale separation with increasing Reynolds number
are realized at different rates for the two velocity–vorticity products contributing
to −∂uv/∂y. Overall, the present data also show that the variability in the peaks
of the different velocity components (as opposed to the vorticity components) is
the most significant factor underlying the degree of scale separation. Of course, an
increasing separation in the peaks of the velocity and vorticity spectra occurs both
with increasing Reynolds number and increasing distance from the wall.

These observations also have relevance to an important question: how high must
the Reynolds number be (say in a well-resolved laboratory experiment or DNS)
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before the effects of scale separation are reliably revealed? A clear result exemplified,
for example, by the study of DeGraaff & Eaton (2000) is useful in this regard.
Specifically, because dependences often occur approximately logarithmically with
Reynolds number, well-resolved experiments should look for about one decade in
variation in the relevant parameter before the dependences can be said to be reliably
revealed. In the present case, the most stringent requirements relate to Ψ (v) and Ψ (ωz).
As just mentioned, these two spectra are nearly indistinguishable at δ+ � 1500 yp/2. At
δ+ ≈ 106, however, the spectral peaks of Ψ (v) and Ψ (ωz) are separated by more than
a decade in wavenumber at yp/2. Assuming a nominally logarithmic variation in the
wavenumber increment between these two peaks with Reynolds number, then a one-
decade separation in the peaks of Ψ (v) and Ψ (ωz) will be attained at δ+ ≈ 39 000. This
estimate applies to scale-separation effects on the dynamics; see (1.4). Interestingly,
significant scale-separation effects pertinent to the kinetic-energy gradient given in
(1.6) are realized at considerably lower Reynolds numbers.

An interesting broader observation relates to the types of vortical motions and
flow-field interactions that one might expect to be most dynamically significant.
Over the past decade or so, considerable effort within the turbulence community has
been devoted toward analysis methods that define and identify vortices. A pervasive
underlying theme in this regard has been a bias toward the study of swirling-type
motions, i.e. those that in cross-section and for a selected advection velocity of
the observer have a nominally closed, nominally circular, streamline pattern. The
underlying focus of the present study is a distinctly different approach. Specifically,
the present method seeks to identify those localized distributions of vorticity (and their
interactions with the velocity field) that affect a time rate of change of momentum.
Notable features of this approach are that the motions studied are the actual field
variables and that their interactions can be directly related to both the instantaneous
and time-averaged forms of the governing dynamical equations. (As far as the authors
are aware, there are no rigorously developed equations that solely and specifically
describe the dynamics of coherent vortices.) When viewed in this manner, there is
no a priori justification for isolating and specifically studying swirling-type vortical
motions. That is, by (1.4), turbulent-stress-gradient generation requires only that
specific velocity and vorticity components are correlated.

5. Conclusions
The velocity–vorticity products vωz and wωy , contributing to the wall-normal

gradient of the Reynolds shear stress, and uωz, contributing to the wall-normal
gradient of the turbulent kinetic energy, were analyzed in this study. The flow fields
considered were low-Rθ smooth-wall and very-high-Rθ relatively-smooth- and rough-
wall turbulent boundary layers.

The conclusions derived from this study are as follows.
(a) The inner-normalized streamwise velocity intensity is relatively sensitive to

increasing Rθ . This statistic is considerably less sensitive to increasing wall roughness.
Conversely, the inner-normalized wall-normal velocity intensity is insensitive to
increasing Rθ (above, say, Rθ � 2000), but displays a detectable sensitivity to increasing
wall roughness. The inner-normalized spanwise velocity intensity exhibits an Rθ -
dependence similar to that exhibited by u′+. The inner-normalized wall-normal
vorticity intensity appears to be largely independent of both Rθ and wall roughness.
Except near the edge of the viscous sublayer, the inner-normalized spanwise vorticity
intensity is also insensitive to both Rθ and wall roughness.
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(b) The vωz
+ and especially the ρvωz

profiles show clear Rθ and wall-roughness
dependences. The r.m.s. fluctuations in (vωz)

+ appear to be largely insensitive to
both Rθ and wall roughness. The cospectrum of v and ωz is dependent on Rθ , wall
roughness and wall-normal position. Its behaviour is summarized as follows.

(i) The characteristic motions underlying the high-Rθ smooth-wall vωz cospec-
trum for y > yp are of larger scale than at yp/2. This scale is nominally given by
the wavenumber of the peak in Ψ (v).
(ii) Owing to a lack of scale separation, the characteristic scale of the motions
contributing to the vωz cospectrum for the smooth-wall y <yp low-Rθ flow is
relatively large when compared with the data at high-Rθ . The characteristic scales
contributing to this cospectrum in the smooth-wall y < yp high-Rθ flow are of the
order of the Taylor wavenumber.
(iii) The correlation between the low wavenumbers in v and ωz is positive for
smooth-wall high-Rθ turbulent boundary layers. This correlation is negative for
the low-wavenumber portion of the cospectrum in the rough-wall high-Rθ flows.

(c) For the present high-Rθ rough-wall turbulent boundary layers, correlations
between the w and ωy motions are negative for y � yp and positive for y � yp . This
correlates well with the change in sign of the −∂uv/∂y profile. Irrespective of the
wall-normal location, the characteristic scales of the wωy motions in the high-Rθ

rough-wall flow are of the order of the Taylor microscale. There are, however, non-
negligible correlations between the larger-scale ωy and w motions. The amplitudes of
these correlations are, however, smaller than those near the Taylor wavenumber.

(d) The correlation between u and ωz shows very little Rθ dependence. This
correlation is also relatively insensitive to wall roughness. The characteristic scales
of the u and ωz correlations are considerably different from those of the v and ωz

correlations. There is a significant scale separation (even at low-Rθ ) between the peaks
in the u and ωz power spectra. Therefore, there are noticeable correlations between
low-wavenumber small-amplitude ωz motions and large-amplitude u motions. In
addition, there are correlations between high-wavenumber large-amplitude ωz motions
and low-amplitude u motions. Both these combinations contribute significantly to the
u–ωz cospectrum.
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